• Login/Join
    • Login
    • Join Agri-TechE
Menu
  • Login/Join
    • Login
    • Join Agri-TechE
  • Home
  • About
    • About Agri-TechE
    • Stakeholder Group
    • Introductions to the agri-tech cluster
    • International
    • Agri-Tech Briefings
      • Controlled Environment Agriculture
      • Gene editing consultation – what does it mean for agri-tech?
      • Controlling light in farming
      • What is ELMs? Agri-Tech to support Environmental Land Management
    • Agri-TechE Newsletters
      • Sign up to the newsletter
  • Events
    • Upcoming Events
    • Agri-TechE activities, conferences and missions for 2022
    • REAP Conference 2022
    • Agri-Tech Week
    • Our Publications
  • Articles
    • Agri-tech News
    • Member News
    • Monthly Musings
    • Innovator Spotlight
    • Leaders in the Field
    • Agri-Tech Archives
  • Community
    • Research Digest
    • Opportunity Zone
    • Young Innovators’ Forum
    • Funding Latest
  • Members
    • Directory
    • Become an Agri-TechE Member
    • Member Testimonials
    • Increasing your profile
    • Agri-TechE Member Drop-In
  • Contact Us
Menu
  • Home
  • About
    • About Agri-TechE
    • Stakeholder Group
    • Introductions to the agri-tech cluster
    • International
    • Agri-Tech Briefings
      • Controlled Environment Agriculture
      • Gene editing consultation – what does it mean for agri-tech?
      • Controlling light in farming
      • What is ELMs? Agri-Tech to support Environmental Land Management
    • Agri-TechE Newsletters
      • Sign up to the newsletter
  • Events
    • Upcoming Events
    • Agri-TechE activities, conferences and missions for 2022
    • REAP Conference 2022
    • Agri-Tech Week
    • Our Publications
  • Articles
    • Agri-tech News
    • Member News
    • Monthly Musings
    • Innovator Spotlight
    • Leaders in the Field
    • Agri-Tech Archives
  • Community
    • Research Digest
    • Opportunity Zone
    • Young Innovators’ Forum
    • Funding Latest
  • Members
    • Directory
    • Become an Agri-TechE Member
    • Member Testimonials
    • Increasing your profile
    • Agri-TechE Member Drop-In
  • Contact Us

Search

More results…

Generic filters
Exact matches only

  • Research Digest, Using big data in agriculture, Wheat
  • wheat, wheat genome assembly, wheat genome sequencing

New wheat genome sequence is the most accurate yet

  • April 26, 2017
  • 11:55 am

New wheat genome sequence is the most accurate yetThe wheat genome contains 17 billion bases – that’s five times the size of the human genome which has made it more difficult to sequence.  A major breakthrough has been made by a consortium led by the Earlham Institute, using new technologies has identified complete sets of genes and proteins essential to important agronomic traits in wheat creating a new wheat genome sequence assembly.

According to The Food and Agriculture Organisation of the United Nations, global crop yields must double by 2050 to meet future food security needs. Globally, wheat is one of the most important staple crops, providing a fifth of daily calories. Extensive knowledge of the wheat genome is needed to increase wheat yield in the future.

The most well-known genome project, The Human Genome Project, was completed in 2003 and the genomes of many organisms, including some plants, have also been decoded. However, despite the agricultural importance of wheat, the large size and hexaploid structure of its genome has made it historically difficult to fully sequence its chromosomes.

The new genome assembly, published in the journal Genome Research, predicts a large number of previously unknown wheat genes and defines where they are located along chromosomes.

The protein analysis research provided direct evidence that many of these genes coded for molecular machinery important for wheat growth and development, protection of wheat from diseases and resistance to harsh environments. This data helps researchers sift through the immense complexity of the wheat genome to identify which parts are playing an active role in the growth and development of wheat.

Over one thousand wheat disease resistance genes and their locations in the genome were revealed by the study. The knowledge will greatly aid marker assisted breeding of wheat disease traits. Also identified were over one hundred gluten genes, the analysis of which will be vital to changing gluten content in wheat.

The collaboration combined advances in genome sequencing and assembly technology from researchers based in Norwich, England at the Earlham Institute and the John Innes Centre with leading protein mass spectrometry data from the ARC Centre of Excellence in Plant Energy Biology at the University of Western Australia.

Professor Graham Moore, who leads the Designing Future Wheat Strategic Programme at the John Innes Centre, said: “The information generated by this project is already helping wheat breeding programmes in the UK and worldwide by providing a framework for selecting lines with improved characteristics, such as yield and disease resistance. This means wheat breeders can now develop new superior wheat varieties faster than ever before”.

Paper: An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations  April 18, 2017, doi:10.1101/gr.217117.116 Genome Res. 2017.

Share

Share on facebook
Share on twitter
Share on linkedin
Related Posts
  • Global risks to food security leads to a code of ethics for plant disease reporting
  • Wheat from seed to seed in 8 weeks
  • Stable raises $60m to help farmers manage risk at a time of turmoil
  • Breeding wheat to withstand higher temperatures
  • Yellow rust turns off genes in wheat during its attack
Archives

Agri-TechE on Twitter

Tweets by AgriTechE 

MORE INFORMATION

  • News archive
  • Privacy
  • Events
  • Newsletter sign-up
  • View latest newsletter
Menu
  • News archive
  • Privacy
  • Events
  • Newsletter sign-up
  • View latest newsletter
Twitter Facebook Youtube Linkedin Instagram

© Agri-TechE 2022

Site design by Out of House