• Login/Join
    • Login
    • Join Agri-TechE
Menu
  • Login/Join
    • Login
    • Join Agri-TechE
  • Home
  • About
    • About Agri-TechE
    • Stakeholder Group
    • Introductions to the agri-tech cluster
    • International
    • Agri-Tech Briefings
      • Controlled Environment Agriculture
      • Gene editing consultation – what does it mean for agri-tech?
      • Controlling light in farming
      • What is ELMs? Agri-Tech to support Environmental Land Management
    • Agri-TechE Newsletters
      • Sign up to the newsletter
  • Events
    • Upcoming Events
    • Agri-TechE activities, conferences and missions for 2022
    • REAP Conference 2022
    • Agri-Tech Week
    • Our Publications
  • Articles
    • Agri-tech News
    • Member News
    • Monthly Musings
    • Innovator Spotlight
    • Leaders in the Field
    • Agri-Tech Archives
  • Community
    • Research Digest
    • Opportunity Zone
    • Young Innovators’ Forum
    • Funding Latest
  • Members
    • Directory
    • Become an Agri-TechE Member
    • Member Testimonials
    • Increasing your profile
    • Agri-TechE Member Drop-In
  • Contact Us
Menu
  • Home
  • About
    • About Agri-TechE
    • Stakeholder Group
    • Introductions to the agri-tech cluster
    • International
    • Agri-Tech Briefings
      • Controlled Environment Agriculture
      • Gene editing consultation – what does it mean for agri-tech?
      • Controlling light in farming
      • What is ELMs? Agri-Tech to support Environmental Land Management
    • Agri-TechE Newsletters
      • Sign up to the newsletter
  • Events
    • Upcoming Events
    • Agri-TechE activities, conferences and missions for 2022
    • REAP Conference 2022
    • Agri-Tech Week
    • Our Publications
  • Articles
    • Agri-tech News
    • Member News
    • Monthly Musings
    • Innovator Spotlight
    • Leaders in the Field
    • Agri-Tech Archives
  • Community
    • Research Digest
    • Opportunity Zone
    • Young Innovators’ Forum
    • Funding Latest
  • Members
    • Directory
    • Become an Agri-TechE Member
    • Member Testimonials
    • Increasing your profile
    • Agri-TechE Member Drop-In
  • Contact Us

Search

More results…

Generic filters
Exact matches only

  • Plant science, Research Digest
  • Plant science

How roots respond to changes in soil revealed

  • October 2, 2017
  • 12:09 pm

A hormonal tug-of-war helps plant roots navigate their journey through the soil. As the root grows the meristem cells at the tip continuously divide, they are left behind in relation to the moving root tip. When these cells reach a certain distance from the tip, called the transition position, they stop dividing and instead start elongating until reaching their maximum lengths, but why?

The question asked by scientists at John Innes Centre and Sapienza University, Rome, was “how do cells “know” when they have reached the transition position between division and elongation? What signal do they read out? ”

The researchers used mathematical and computer modelling with molecular genetics to show how roots can regulate their growth via the interactions of two antagonistic hormones, auxin and cytokinin.

Dr Veronica Grieneisen of the John Innes Centre, explains positional information is a common feature in all developing organisms:
“Cells, although initially all identical, need to change fate or behaviour according to where they are located in the embryo or organ. This is positional information.

The scientists looked at the “positional information” available at the transition zone that would enable cells to know they are at the right location to transit behaviour from dividing (meristem zone) to elongating (elongation zone), and how this information is established and positioned.

They established that the hormone auxin was present at very high levels at the root tip to maintain certain cells as stem cells, and that this was the result of fast dynamics of auxin swirling around due to PINs (proteins that pump auxin through the root).

Their computational work had revealed how these currents of auxin allowed the auxin maximum and its associated gradient to move together with the growing root, providing part of the necessary positional information required to coordinate the meristem zone.

Further recent work, however, showed that auxin does not regulate the transition alone. Antagonistic cross-talk between auxin and another hormone, cytokinin, could both stabilise the size of the meristem zone, and even change it – thus, either stabilizing root growth, or changing its velocity.

Dr Grieneisen continues: “By merely sensing relative changes in auxin, cells robustly notice that they have reached the auxin minimum and thus the point of transition, triggering their switch in behaviour.”

Experiments using Arabidopsis roots demonstrated that a tug-of-war between cytokinin and auxin results in this auxin minimum being positioned either closer to the root tip (if cytokinin is “winning” the tug-of-war), or it being positioned further away from the tip (when auxin is “winning” the tug-of-war).

In nature this mechanism allows the root to respond to its environment, proliferating in favourable conditions while restricting growth in adversity.

The findings are published in the paper An Auxin Minimum Triggers the Developmental Switch from Cell Division to Cell Differentiation in the Arabidopsis Root PNAS: http://www.pnas.org/content/early/2017/08/17/1705833114.abstract

Share

Share on facebook
Share on twitter
Share on linkedin
Related Posts
  • A trait based regulatory framework could release benefits of blight resistance
  • Growing plant science
  • Managing the health of the crop microbiome
  • Earlham Institute is supporting aquaculture with new genomic resources
  • How wheat creates a chemical defence to disease
Archives

Agri-TechE on Twitter

Tweets by AgriTechE 

MORE INFORMATION

  • News archive
  • Privacy
  • Events
  • Newsletter sign-up
  • View latest newsletter
Menu
  • News archive
  • Privacy
  • Events
  • Newsletter sign-up
  • View latest newsletter
Twitter Facebook Youtube Linkedin Instagram

© Agri-TechE 2022

Site design by Out of House